

Coimisiún na Scrúduithe Stáit State Examinations Commission

LEAVING CERTIFICATE 2010

MARKING SCHEME

PHYSICS

ORDINARY LEVEL

General Guidelines

In considering this marking scheme the following points should be noted.

- 1. In many instances only key words are given, words that must appear in the correct context in the candidate's answer in order to merit the assigned marks.
- 2. Marks shown in brackets represent marks awarded for partial answers as indicated in the scheme.
- **3.** Words, expressions or statements separated by a solidus, /, are alternatives which are equally acceptable.
- **4.** Answers that are separated by a double solidus, //, are answers which are mutually exclusive. A partial answer from one side of the // may not be taken in conjunction with a partial answer from the other side.
- 5. The descriptions, methods and definitions in the scheme are **not** exhaustive and alternative valid answers are acceptable. Marks for a description may be obtained from a relevant diagram, depending on the context.
- **6.** Where indicated, 1 mark is deducted for incorrect/ no units.
- 7. Each time an arithmetical slip occurs in a calculation, one mark is deducted.
- 8. The context and the manner in which the question is asked and the number of marks assigned to the answer in the examination paper, determine the detail required in any question. Therefore, in any instance, it may vary from year to year.

Question 1 40 marks

(i) D lab	raw a labelle elled diagrar	ed diagram of n to show:	the apparat	us you uso	ed		3 × 3
tro	lley / rider						
run	way / air-trac	k · c	<i>,</i> •	11 /	• 1 /		
me	ans of apply	ing a force e.g.	string over p	ulley to w	eight on pa	n Uticleantance (and	timen
me	ans of measu	iring acceleration	on e.g. 2 pho	no-gales (a	and unner) / 2	lines correct	$\frac{1}{2}$
Νοτι		deduct 2			3	mes correct	3 × 3
non	accept valid	alternatives e d	a data loggir	a method	s which fit	the scheme	
(::) TI	accept vand	manuna tha a	nnlind form	າ <u>ຮ</u> ກາວແມ່ນຜ ຈ	s, which h	the scheme	6
(II) П	low ald you reighed the m	measure me a	<i>ma</i> // from the	: he (digital	Newton) h	alance	0 OF 3
w n:	artial answer	lass (and pair) /	mg // moni u	lie (urgitai	Newton) U	alalice	(3)
P							(3)
(iii) H	How did vou	minimise the	effect of fric	tion duri	ng the exp	eriment?	6 or 3
sl	ant/clean the	runway // oil	(the trolley)	wheels / f	rictionless	wheels	6
pa	artial answer	2	· · · · · · · · · · · · · · · · · · ·				(3)
T	his may be ir	nferred from the	e diagram in	(i)			
(iv) F	Plot a graph	on graph pape	er of the bod	ly's accele	eration aga	inst the force	
8	applied to it.						4×3
1	abel one axis	s correctly- nan	ne/symbol/ur	nit accepta	ble		3
I	plot four point	s correctly					3
I	plot another t	hree points cor	rectly				3
	straight line	• , 1		1 2 2			3
1	f graph pape	r is not used	max1mum ma	ark 3×3			
	12		Acceler	ation again	st Force		
	1.2				I		
	1 +						
S- ²	0.8 -						
/ m							
ion	0.6						
rat							
cele							
Ac	0.4						
							_
	0.2						
	1						

Question 2 40 marks

A student carried out an experiment to measure the specific heat capacity of a substance.

(i) Draw a labelled diagram of the apparatus used in the experiment.	4×3
block of metal // calorimeter with liquid means of heating e.g. coil (and power supply) means of measuring energy supplied e.g. joulemeter insulation / (electronic) balance / stirrer /thermometer /other detail incorrect experiment, maximum mark 3×3	3 3 3 3
No labels, deduct 2 accept valid alternatives	
(ii) Describe how the mass of the substance was determined. (mass of metal block obtained with an electronic) balance //	6 or 3
mass of calorimeter and warm water - mass of calorimeter partial answer e.g. weigh it	6 (3)
(iii) What other measurements did the student take during the experiment? initial/minimum temperature final/maximum temperature joules supplied / <i>VIt</i> mass of calorimeter	6 + 3
2 lines correct	6+3
1 line correct partial answer e.g. current, voltage, time	(6) (3)
(iv) Give the formula used to calculate the specific heat capacity of the substance.	7 or 4
$E = mc\Delta\theta // VIt = m_w c_w \Delta\theta + m_{cal} c_{cal} \Delta\theta // any valid formula$	7
partial answer e.g. one part correct // attempts word version of the formula	(4)
(v) Give a precaution that the student should have taken to get an accurate result. initial temperature below room temperature (to help compensate for heat loss),	6 or 3
repeat and get an average, insulate, etc. one correct	6
partial answer e.g. repeat	(3)
answers to (iv) and (v) may merit full marks if consistent with incorrect (i)	

Question 3 40 marks

A student carried out an experiment to measu (i) Draw a labelled diagram showing how the	the focal length of a concave mirror. aratus was arranged 4×3
labelled diagram to show	
concave mirror	
object e.g. crosswire	
image	
correct arrangement	
detail e.g. optical bench, metre-stick, screen,	-box, etc.
	4 lines correct 4×3
approximate method maximum mark 3×3	
No labels, deduct 2	
accept valid alternatives	
(1) Mark the distances u and v on your diagra distance from the object/grogonize to the	$\frac{2 \times 3}{2}$
distance from the image/series to the mi	$\begin{array}{c} 101 \text{ Shown as } u \\ \text{shown as } u \\ \end{array} $
bartial answer a g reversed	$SHOWH as V \qquad $
partial answer e.g. reversed	(3)
(iii) How was the position of the real image	ated? 6 or 3
move the screen/object until a clear (inverted	age (is obtained) // by focussing 6
partial answer e.g. mention of screen	(3)
(iv) Calculate the value for the focal length f of	mirror using the data. 4×3
μ/cm 20 30	50

	<i>u</i> /cm	20	30	50		
	v/cm	65	32	23		
$f = 15.5 \text{ (cm)}$ $\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$ $\frac{1}{f} = \frac{1}{20} + \frac{1}{69}$ $\frac{1}{f} = \frac{1}{30} + \frac{1}{32}$	n) $\frac{1}{5} = \frac{13}{260} + \frac{4}{260} = \frac{16}{2} = \frac{16}{480} + \frac{15}{480} = \frac{16}{480} = \frac{15}{480} = \frac{16}{480} = \frac{16}$	$=\frac{17}{260}$ = $\frac{31}{480}$	$\Rightarrow f = 15$ $f = 15$.29 .48		4 × 3
$\frac{1}{f} = \frac{1}{50} + \frac{1}{23}$	$\frac{1}{3} = \frac{23}{1150} + \frac{50}{1150}$	$\frac{73}{1150}$	$\Rightarrow f = 15.$.75		(2 2)
					two correct	(3×3)
					one correct	(2×3)
partial answ	ver e.g. the equa	tion, averag	ge, etc.			(3)
(v) Why did th	ne student rep	eat the ex	periment?			4 or 2
greater accuracy / more reliable result / minimise errors						4
partial ans	wer e.g. to get	t an averag	ge			(2)

Question 4 40 marks

In an experiment to determine the resistivity of the material of a wire, a student measured the length, diameter and resistance of a sample of nichrome wire.

(i) Describe how the student measured the resistance of the wire. shummater (digital) multimater (measure V and L and hance determine $P / P = \frac{V}{2}$	6 or 3
partial answer e.g. measure I / ammeter	(3)
(ii) Describe how the length of the wire was measured.(ensure the wire is taut and measure the length between the crocodile clips using a) metre-stick	4 or 2
partial answer e.g. detail such as ensure no kinks	(2)
(iii) What instrument did the student use to measure the diameter of the wire? micrometer / digital callipers partial answer e.g. vernier	2(6 or 3) 6 (3)
Why did the student measure the diameter of the wire at different places?	(5)
to get average (diameter) // as wire may not be uniform partial answer e.g. detail	6 (3)
(iv) Using the data, calculate the cross-sectional area of the wire.	3×3
$3.03 - 3.14 \times 10^{-8} (m^2)$	3×3
A = $\pi (0.1 \times 10^{-3})^2$ average d = 0.197 / 0.20 mm // r = 0.1 mm	(2×3) (3)
(v) Find the resistivity of nichrome.	3×3
1.25 - 1.29 × 10 ⁻⁶ (Ω m) // answer consistent with (iv)	3×3
$\rho = \frac{(20.2)(3.14 \times 10^{-8})}{0.488}$	(2 × 3)
partial answer e.g. one quantity substituted correctly into the equation	(3)

Question 5

any *eight* parts

56 marks

-

The <u>best 8</u> from 10 parts

proportional to the volume $//PV = k$ (when T and m are fixed) partial answer e.g. incomplete statement	(4)
Particular and the total and the statements	
(b) A concrete mixer delivered 50 m ³ of concrete to a building site, what was the	
mass of the concrete delivered? ($\rho = \frac{m}{V}$ density of concrete = 2400 kg m ⁻³)	7 or 4
(m =2400 × 50 =) 120000(kg) partial answer e.g. substitutes one quantity correctly into the equation // $m = \rho V$	7 (4)
(c) State Archimedes' Principle (when a body is immersed in a fluid/liquid it experiences an) upthrust equal (in size) to the weight of the fluid displaced	7 or 4
partial answer e.g. incomplete statement / mention of upthrust	(4)
(d) Which of these scientists is associated with the law of refraction of light? Rutherford Snell Joule Einstein	7
Snell	7
(e) If the temperature of an object is 28°C, what is its temperature in Kelvin? (273.15+28 =) 301(.15 K)	7 or 4 7
partial answer e.g. 273 / mention of adding // 245	(4)
(f) Give one difference between a light wave and a sound wave (light waves) travel faster (than sound waves)// light travels in transverse waves // sound in longitudinal waves // etc.	7 or 4
partial answer e.g. difference stated but in reverse order	(4)
(g) Sketch the magnetic field surrounding a bar magnet $\downarrow \downarrow \qquad \downarrow \downarrow \qquad $ correct diagram to show	7 or 4
magnet, two field lines, correct direction on lines partial answer e.g. incomplete diagram	7 (4)
(h) Give a common use of capacitors? store charge // tune radio // flash guns // smoothing // filtering // etc. partial answer e.g. used in radios/cars	7 or 4 7 (4)
(i) In relation to semiconductors, what is meant by the term doping? adding impurity/atoms and a relevant detail e.g. to change conductivity partial answer e.g. adding impurities, adding a substance	7 or 4 7 (4)
(j) What type of nuclear reaction occurs in a nuclear power station? fission partial answer e.g. fusion	7 or 4 7 (4)

Question 6	56 marks
Define (a) momentum (b) kinetic energy	2(6 or 3)
<i>momentum</i> = (mass)(velocity) $// p = mv$	6
partial answer	(3)
<i>kinetic energy</i> : energy due to motion $//\frac{1}{2}mv^2$	6
partial answer	(3)
State the principle of conservation of momentum. Explain how this pri applies in launching a spacecraft.	nciple $3 \times 3 + 3$
momentum before = momentum after $// m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$	2 3 × 3
deduct 3 marks for each error partial answer e.g. incomplete equation// in a closed system	(3)
momentum of rocket equal but opposite to rocket exhaust	3
An ice skater of mass 50 kg was moving with a speed of 6 m s ^{-1} then sh with another skater of mass 70 kg who was standing still. The two skat moved off together.	e collides ers then
(i) Calculate the momentum of each skater before the collision? $(50 \times 6 =)\ 300\ (\text{kg m s}^{-1})$ $(70 \times 0 =)\ 0\ (\text{kg m s}^{-1})$	2 × 3 3 3
 (ii) What is the momentum of the combined skaters after the collision? 300 (kg m s⁻¹) partial answer e.g. 0 (kg m s⁻¹) 	6 or 3 6 (3)
(iii) Calculate the speed of the two skaters after the collision. $v = 2.5 \text{ (m s}^{-1} \text{)}$ partial answer e.g. (50+70) v	6 or 3 6 (3)
(iv) Calculate the kinetic energy of each skater before the collision. $(\frac{1}{2}mv^2 = \frac{1}{2}(50)(6)^2 =)900$ (J)	2×3
$\left(\frac{1}{2}mv^{2} = \frac{1}{2}(70)(0)^{2} = \right) 0 (J)$ (v) Calculate the kinetic energy of the pair of skaters after the collision $\left(E_{1} = 16mv^{2} = 16 \times 120 \times (2.5)^{2} = 1275 \text{ (I)} + 120 \times (2.5)^{2} = 120 120 \times (2.5)^{2} $	3 4 or 2
$(L_k - 72nv - 72 \times 120 \times (2.5) - 7575 (5) // answer consistent with partial answer e.g. correct substitution(vi) Comment on the total kinetic energy values before and after the second$	(2)
kinetic energy not conserved in collision // answer consistent with (iv) partial answer	and (v) 4 (2)

Question 7 56 marks

The diagram sh	hows a waveform. $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \bigcirc \\$
(i) What is the r	name given to the distance (a) X, (b) Y?	2×3
X = Wavelen Y = Amplitude partial mark i	igth / λ de /height /depth if both correct but reversed	3 3 (3)
(ii) What is mean number of way partial answe	at by the frequency of a wave? ves (passing a point) per second er	6 or 3 6 (3)
(iii) Explain the t frequency obj partial answe	term natural frequency? Jects tends to vibrate at (when set in motion) // resonance frequency r e.g. lowest frequency	6 or 3 6 (3)
(iv) If the nature sound wave 1.36 (m) 340 = 250 × 2 partial answ	al frequency of a string is 250 Hz calculate the wavelength of the produced. A ver e.g. one quantity substituted correctly into the equation $/\lambda = \frac{c}{f}$	3×3 3×3 (2×3) (3)
(v) State the wa musical not (c) (loudnes (d) (pitch de	ve property on which (c) the loudness, (d) the pitch, of a se depends s depends on) amplitude / energy // frequency epends on) frequency / wavelength	3 × 3
partial answ	two lines correct one line correct ver e.g. other property	3 × 3 (2 × 3) (3)
An opera singer, resonance // t partial answe	singing a high pitched note, can shatter a glass. Explain why. ransfer of energy r	6 or 3 6
Describe a labora	atory experiment to demonstrate resonance	$4 \times 3 + 2$
apparatus:	Barton's pendulums // tuning fork and adjustable length of air	3
procedure:	hang the pendulums (vertically) from a horizontal string //	2
	set one of the pendulums swinging // adjust the length of the air column	3
observation:	the pendulum of the same length also swings //	
conclusion:	at a certain length the note emitted by the tuning fork gets louder a transfer of energy occurs / resonance occurs	3 2
marks may be	e obtained from a diagram	

accept valid alternatives

Question 8 56 marks

(a)	What is heat? (heat is a form of) energy partial answer	6 or 3 6 (3)			
	Free and the second s	(-)			
	Explain how heat transferred in a solid?	3×3			
	atoms are touching / in contact	3			
	hy vibration / without the atoms moving along	3			
	mentions conduction / without the movement of matter / warmer to cooler	(2×3)			
	partial answer	(2 × 3) (3)			
	Describe an experiment to compare the rates of heat transfer through				
	different solids.	4×3			
	<i>apparatus</i> : bath of water containing different rods which protrude at the same height // four different metals bars arranged like spokes and touch in the middle	3			
	melt candle wax onto the outer end of each rod/metal and stick a matchstick/nin into the candle wax	3			
	<i>procedure</i> : heat the water-bath // heat the metals over a Bunsen	3			
	<i>observation // conclusion</i> : heat is conducted along the rods and the matchsticks	-			
	fall off at different times // heat is transferred at different rates	3			
	marks may be obtained from a diagram				
	accept valid alternatives	(3)			
	Explain the term U-value				
	measure of heat transmission / measure of insulation	6			
	partial answer e.g. insulation	(3)			
	How can the U-value of the walls of a house be reduced?	4 or 2			
	any valid example e.g. (thicker) insulation, double glazed windows, etc.	4			
	partial answer e.g. close windows	(2)			
(b)		_			
(i)]	How is the sun's energy transferred to the solar collector? radiation / rays	3 3			
(ii)	Why is the solar collector normally nainted black?	3			
(11)	(black surfaces are) better absorbers (of heat/radiation)	3			
(iii)	How is the heat transferred from the solar panel to the hot water tank?	3			
	by the water flowing/pumped (through the collector and the heating coil)	3			
(iv)	The heating coil for the hot water tank are placed at the bottom, explain why water is heated by convection / hot water rises, etc.	4 or 2 4			
	partial answer	(2)			
(v)	Give an advantage and a disadvantage of a solar heating system	2×3			
	any valid advantage e.g. reduces costs, unlimited supply, no pollution, etc. any valid disadvantage e.g. needs sun, requires a back-up, costly to install, etc.	3 3			

Question 9 56 marks

(a) State Coulomb's law of force between electric charges.	3×3
product of charges / $\Omega_1 \Omega_2$	3
inversely proportional to the square of the distance between them / $\propto \frac{1}{d^2}$	3
(i) How would you detect the presence of an electric field? using an electroscope // electric field sensor // electric field meter using a meter // charged object/fluorescent bulb partial answer e.g. mention of charge, detects magnetic field	3×3 3×3 (2×3) (3)
(ii) What is the unit of electric charge? coulomb / C partial answer e.g. other electrical unit	4 or 2 4 (3)
(iii) How does the lightning conductor prevent damage to the building? provides (safe) path for flow of current if struck // it earths the building // allows easy path for discharge //other suitable explanation partial answer	6 or 3 6 (3)
(iv) Suggest a suitable material for a lightning conductor metal / named metal e.g. copper / aluminium partial answer	4 or 2 4 (2)
(b) State Ohm's law $V \propto I$ // $V = IR$ (at a constant temperature) $V/I/R / \infty$ / at a constant temperature	6 or 3 6 (3)
The diagram shows a number of resistors connected to a 12 V battery and a bulb whose resistance is 4 Ω .	
Calculate (i) The combined resistance of the 15 Ω and 30 Ω resistors in parallel. 10 (Ω) partial answer e.g. $\frac{1}{15} + \frac{1}{30}$	6 or 3 6 (3)
(ii) The total resistance of the circuit 24 (Ω) // answer consistent with (i) partial answer e.g. 20 Ω if equations in (i) and (ii) are reversed maximum mark 2 × 3	6 or 3 6 (3)
(iii) The current flowing in the circuit 0.5 (A) // answer consistent with (ii) partial answer e.g. valid equation, $I = \frac{V}{R}$	6 or 3 6 (3)

Question 10 56 marks

X-rays are produced when high speed electrons collide with a target in an X-ray tube as shown in the diagram

(i)	What process occurs at the filament A?	6 or 3
	thermionic emission / release of electrons // heating	6
	partial answer e.g. incomplete answer	(3)
(ii)	Name a substance commonly used as the target B tungsten / molybdenum	6 or 3 6
	partial answer e.g. metal / named metal	(3)
(iii) Give three properties of X-rays (electromagnetic) waves / have short wavelength, ionise, penetrate, no mass, no charge, effect photographic film, cause fluorescence, diffraction, etc.	3 × 3
	three correct	3×3
	two correct	(2×3)
	one correct	(3)
(iv) Give two uses of X-rays	2×3
	specific medical use e.g. X-ray photo, photo organs, destroy cancerous cells specific industrial use e.g. detect cracks in metals, determine thickness of materials	
	two correct	2×3
	one correct	(3)
	partial answer e.g. general use such as medicine/industry/photos	(3)
(v)	State the function of the part marked C protection / shielding	5 or 3 5
	partial answer e.g. maintain a vacuum	(3)
Th	e photoelectric effect can be regarded as the inverse of X-ray production	
(vi) What is meant by the photoelectric effect?	2×3
	emission of electrons (from the surface of a metal by)	3
	(electromagnetic) radiation / light (of a suitable frequency)	3
(vi	i) Describe an experiment to demonstrate the photoelectric effect	4×3
	<i>apparatus</i> : (gold leaf) electroscope, UV lamp	3 3
	procedure: place a zinc plate on the cap of the electroscope / charge the electroscope	
	negatively / shine the UV lamp on the zinc plate.	3
m	arks may be obtained from a diagram	3
a	copt valid atomativos	
(vi	ii) Give two applications of the photoelectric effect	2×3
	burglar alarms, automatic doors, central heating control, film sound track, etc.	
	two correct	2×3
	one correct	(3)

Question 11 56 marks

Read this passage and answer the questions below.

In 1819 the Danish physicist Hans Christian Oersted discovered that an electric current flowing through a wire deflected a compass needle.

A year later the Frenchman François Arago found that a wire carrying an electric current acted as a magnet and could attract iron filings. Soon his compatriot André-Marie Ampère demonstrated that two parallel wires were attracted towards one another if each had a current flowing through it in the same direction. However, the wires repelled each other if the currents flowed in the opposite directions.

Intrigued by the fact that a flow of electricity could create magnetism, the great British experimentalist Michael Faraday decided to see if he could generate electricity using magnetism. He pushed a bar magnet in and out of a coil of wire and found an electric current being generated. The current stopped whenever the magnet was motionless within the coil.

(Adapted from 'Quantum' by Manjit Kumar, Icon Books 2008)

(a) Who discovered that an electric current can deflect a compass needle Oersted /Hans / Christian	? 7 7
(b) What did Arago discover? a wire carrying an electric current acted as a magnet / could attract iron f partial answer e.g. incomplete answer	7 or 4 filings 7 (4)
(c) What happens when currents flows in the same direction in two para	allel wires? <mark>7 or 4</mark>
partial answer e.g. the wires move	(4)
(d) How could two parallel wires be made to repel each other?	7 or 4
partial answer	(4)
(e) Draw a sketch of the apparatus Michael Faraday used to generate el	ectricity 7 or 4
correct diagram to include magnet, coil and meter	7
partial answer e.g. incomplete diagram	(4)
 (f) What name is given to the generation of electricity discovered by Michael Faraday? electromagnetic induction partial answer e.g. induction 	7 or 4 7 (4)
(g) What energy conversions that take place in Faraday's experiment kinetic to electric	7 or 4 7
partial answer e.g. one energy correct	(4)
(h) How does Faraday's experiment show that a changing magnetic field required to generate electricity? current stopped whenever the magnet was motionless // electricity is only	is 7 or 4 generated
when the magnet or coil is moving	7
partial answer e.g. incomplete answer	(4)

Question 12 56 marks

Part (a)

The diagram shows a cyclist on a bike; their combined mass is 120 kg.

The cyclist starts from rest and by pedalling applies a net force of 60 N to move the bike along a horizontal road. Calculate:

(i) The acceleration of the cyclist	6 or 3
$(a = \frac{r}{m} = \frac{60}{120} =) 0.5 \text{ (m s}^{-2})$	6
partial answer e.g. one quantity substituted correctly into the equation $/a = \frac{F}{m}$	(3)
(ii) The maximum velocity of the cyclist after 15 seconds	6 or 3
(v = u + at = 0 + (0.5)(15) =) 7.5 (m s ⁻¹) // answer consistent with (i)	6
partial answer e.g. one quantity substituted correctly into the equation	(3)
(iii) The distance travelled by the cyclist during the first 15 seconds	3
$(s = ut + \frac{1}{2}at^2 = 0 + \frac{1}{2}(0.5)(15)^2 =) 56.25 \text{ (m)} // \text{ answer consistent with (i)}$	3
The cyclist stops peddling after 15 seconds and continues to freewheel for a	
further 80 m before coming to a stop	<i>.</i>
(iv) Why does the bike stop?	6 or 3
due to friction / air resistance // no forward force	(2)
partial answer e.g. cyclist stops peddinig	(3)
(v) Calculate the time taken for the cyclist to travel the final 80 m?	7 or 4
$(s = \frac{(u+v)}{2}t \Rightarrow 80 = \frac{(7.5+0)}{2}t \Rightarrow t = \frac{2(80)}{7.5} = 121.33 \text{ (s) // answer}$	
2 2 7.5 consistent with (ii)	7
partial answer e.g. one quantity substituted correctly into the equation	(4)
Part (b) What is meant by dispersion of light? breaking up of (white) light into different colours // into constituent colours partial answer	2×3 3 (3)
	(3)
Describe an experiment to demonstrate the dispersion of light	4×3
apparatus: white light	3
prism, (diffraction) grating, CD	3
observation //conclusion: : different colours / 3 named colours / spectrum	5
white light is dispersed // white light consists of different colours	3
marks may be obtained from a diagram accept valid alternatives	
Give an example of the dispersion of light occurring in nature	4 or 2
rainbow / oil film colours / soap bubble colours / CD colours	(2)
partial answer e.g. meonipiete answer	(2)
Only red, green and blue lights are needed to create most lighting effects.	6
all colours can be made by mixing red green and blue // primary colours	o or 3 6
partial answer e.g. incomplete answer	(3)

Part (c) The diagram shows a plug which contains a fuse, an MC	CB and an RCD	22
(1) Explain how a fuse works wire melts, with too high a current, breaking circuit	two correct	2×3 2×3 (3)
	one correct	(3)
(ii) How does the fuse improve safety?		4 or 2
prevents too high a current flowing / reduce fire risk		4
partial answer		(2)
(iii) What is an MCB?		3
miniature circuit breaker / trip switch / safety device		3
(iv) What is the function of an RCD?		6 or 3
to protect against electrocution /shut off current in event of a fault /safety switch		
partial answer e.g. safety, residual-current device		(3)
(v) Why should an appliance be earthed?		6 or 3
provide path for current in event of a fault // to protect against electrocution		
partial answer e.g. safety		(3)
(vi) Give one other precaution that should be taken to in using electricity in the home	nprove safety when	3
do not use appliances near water / do not overload sock	kets, etc.	3
Part(d)		
What is radioactivity?		2×3
disintegration/decay of nuclei/atoms		3
with emission of radiation/energy / α / β / γ		3
The diagram shows a shielded radioactive source emittin	ng nuclear radiation.	2
(1) How do you know that the source is emitting three types of one type stopped by the paper, 2^{nd} by the aluminium and the	3^{rd} by the concrete	3
(ii) Name the radiation blocked by each material		2×3
paper blocks alpha / α ,		
aluminium blocks beta/ p, concrete blocks gamma/ y		
concrete breeks gamma 1	two correct	2×3
(iii) Cive one denger accepted with pueleer rediction		2
cancer, radiation sickness, ionises/kills/damages cells, etc.	one correct	3
(iv) State two presentions that should be taken when be	ndling vadioactiva	
substances	numing radioactive	4 or 2
use tongs, wear gloves, do not point at body, etc	two correct	4
	one correct	(2)
(v) Give two uses for radioactive substances		2×3
medical / energy source / industrial,	two correct	2×3
	one correct	(3)